Phosphatidylinositol 4,5-bisphosphate Directs Spermatid Cell Polarity and Exocyst Localization in Drosophila

نویسندگان

  • Lacramioara Fabian
  • Ho-Chun Wei
  • Janet Rollins
  • Tatsuhiko Noguchi
  • J. Todd Blankenship
  • Kishan Bellamkonda
  • Gordon Polevoy
  • Louis Gervais
  • Antoine Guichet
  • Margaret T. Fuller
  • Julie A. Brill
چکیده

During spermiogenesis, Drosophila melanogaster spermatids coordinate their elongation in interconnected cysts that become highly polarized, with nuclei localizing to one end and sperm tail growth occurring at the other. Remarkably little is known about the signals that drive spermatid polarity and elongation. Here we identify phosphoinositides as critical regulators of these processes. Reduction of plasma membrane phosphatidylinositol 4,5-bisphosphate (PIP(2)) by low-level expression of the PIP(2) phosphatase SigD or mutation of the PIP(2) biosynthetic enzyme Skittles (Sktl) results in dramatic defects in spermatid cysts, which become bipolar and fail to fully elongate. Defects in polarity are evident from the earliest stages of elongation, indicating that phosphoinositides are required for establishment of polarity. Sktl and PIP(2) localize to the growing end of the cysts together with the exocyst complex. Strikingly, the exocyst becomes completely delocalized when PIP(2) levels are reduced, and overexpression of Sktl restores exocyst localization and spermatid cyst polarity. Moreover, the exocyst is required for polarity, as partial loss of function of the exocyst subunit Sec8 results in bipolar cysts. Our data are consistent with a mechanism in which localized synthesis of PIP(2) recruits the exocyst to promote targeted membrane delivery and polarization of the elongating cysts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Actin cables and the exocyst form two independent morphogenesis pathways in the fission yeast

Cell morphogenesis depends on polarized exocytosis. One widely held model posits that long-range transport and exocyst-dependent tethering of exocytic vesicles at the plasma membrane sequentially drive this process. Here, we describe that disruption of either actin-based long-range transport and microtubules or the exocyst did not abolish polarized growth in rod-shaped fission yeast cells. Howe...

متن کامل

PI4KIIIα is required for cortical integrity and cell polarity during Drosophila oogenesis.

Phosphoinositides regulate myriad cellular processes, acting as potent signaling molecules in conserved signaling pathways and as organelle gatekeepers that recruit effector proteins to membranes. Phosphoinositide-generating enzymes have been studied extensively in yeast and cultured cells, yet their roles in animal development are not well understood. Here, we analyze Drosophila melanogaster p...

متن کامل

PI4KIIIa is required for cortical integrity and cell polarity during Drosophila oogenesis

Phosphoinositides regulate myriad cellular processes, acting as potent signaling molecules in conserved signaling pathways and as organelle gatekeepers that recruit effector proteins to membranes. Phosphoinositide-generating enzymes have been studied extensively in yeast and cultured cells, yet their roles in animal development are not well understood. Here, we analyze Drosophila melanogaster p...

متن کامل

Overexpression of Partner of Numb Induces Asymmetric Distribution of the PI4P 5-Kinase Skittles in Mitotic Sensory Organ Precursor Cells in Drosophila

Unequal segregation of cell fate determinants at mitosis is a conserved mechanism whereby cell fate diversity can be generated during development. In Drosophila, each sensory organ precursor cell (SOP) divides asymmetrically to produce an anterior pIIb and a posterior pIIa cell. The Par6-aPKC complex localizes at the posterior pole of dividing SOPs and directs the actin-dependent localization o...

متن کامل

Phosphatidylinositol 4,5-bisphosphate mediates the targeting of the exocyst to the plasma membrane for exocytosis in mammalian cells.

The exocyst is an evolutionarily conserved octameric protein complex that tethers post-Golgi secretory vesicles at the plasma membrane for exocytosis. To elucidate the mechanism of vesicle tethering, it is important to understand how the exocyst physically associates with the plasma membrane (PM). In this study, we report that the mammalian exocyst subunit Exo70 associates with the PM through i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2010